Circles

1. In the given figure, O is the centre of the circle and $\angle P B A=45^{\circ}$. Calculate the value of $\angle \mathrm{PQB}$.

Answer:
$\angle \mathrm{AOB}=180^{\circ}$
$\Rightarrow \angle \mathrm{APB}=90^{\circ}$ (angle of diameter)
$\Rightarrow \angle \mathrm{PAB}=90^{\circ}-45^{\circ}=45^{\circ}$
$\Rightarrow \angle P Q B=45^{\circ}$ (angle for same arc)
2. In an equilateral $\triangle \mathrm{ABC}$ of side 14 cm , side $B C$ is the diameter of a semi-circle as shown in the figure below. Find the area of the shaded region. [3]
(take $\pi=22 / 7$ and $y(\sqrt{ } 3=1.732)$

Answer:
(b) Area of equilateral triangle $A B C=\frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} \times(14)^{2}=\frac{\sqrt{3}}{4} \times 196$

$$
=49 \sqrt{3} \mathrm{~cm}^{2}
$$

$$
=84.868 \mathrm{~cm}^{2}
$$

Area of semi-circle $=\frac{1}{2} \times \pi r^{2}=\frac{1}{2} \times \frac{22}{7} \times 7^{2}$
$=77 \mathrm{~cm}^{2}$
Total area of shaded region $=84 \cdot 868+77$
$=161.868 \mathrm{~cm}^{2}$.
3. In the given figure, if $\angle A C E=43^{\circ}$ and $\angle C A F=62^{\circ}$ find the values of a, b and c.

Answer:

$$
\begin{aligned}
\angle A E C & =180^{\circ}-(\angle E A C+\angle A C E) \\
& =180^{\circ}-\left(62^{\circ}+43^{\circ}\right)=180^{\circ}-105^{\circ} \\
& =75^{\circ} \\
\angle C E F & =180^{\circ}-75^{\circ} \quad(\text { cyclic quadrilateral }) \\
& =105^{\circ} \\
\angle A B D=\angle a & =180^{\circ}-75^{\circ} \\
& =105^{\circ} \\
\angle b=\angle A F D & =180^{\circ}-\left(62^{\circ}+105^{\circ}\right) \\
& =180^{\circ}-\left(167^{\circ}\right) \\
& =13^{\circ} \\
\angle c=\angle E D F & =180^{\circ}-\left(105^{\circ}+13^{\circ}\right) \\
& =180^{\circ}-\left(118^{\circ}\right) \\
& =62^{\circ}
\end{aligned}
$$

4. In the given figure O is the centre of the circle. Tangents at A and B meet at C. If $\angle A O C=30^{\circ}$, find
(i) $\angle \mathrm{BCO}$
(ii) $\angle A O B$
(iii) $\angle \mathrm{APB}$

Answer:

(i)		$\triangle \mathrm{ACO} \cong \triangle \mathrm{BCO}$	(R.H.S.)
		$\angle \mathrm{BCO}=\angle \mathrm{ACO}$	(C.P.C.T.)
		$\angle \mathrm{BCO}=30^{\circ}$	
	In $\triangle \mathrm{ACO}$,	$\angle \mathrm{OAC}=90^{\circ}$	(Radius is perpendicular to tangent)
	\therefore	$\angle \mathrm{AOC}=60^{\circ}$	
	Also	$\angle B O C=60^{\circ}$	(C.P.C.T.)
(ii)		$\angle \mathrm{AOB}=120^{\circ}$	
(iii)		$\angle \mathrm{APB}=60^{\circ}$	(Angle at circumference is half the angle at the centre)

5. Calculate the area of the shaded region, if the diameter of the semi-circle is equal to 14 cm . Take $\pi=22 / 7$

Answer:

$$
\begin{aligned}
& \text { Area of shaded portion }=\text { Complete area - area of the two quadrants } \\
&=\text { (Area of ACDE }+ \text { Area of semi circle EFD) } \\
& \text { (Area of Quadrant ABE + } \\
& \text { Area of Quadrant BCD) } \\
&=\left\{14 \times 7+\frac{\pi}{2}(7)^{2}\right\}-\left\{\frac{\pi}{4}(7)^{2}+\frac{\pi}{4}(7)^{2}\right\} \\
&=\left\{14 \times 7+\frac{\pi}{2}(7)^{2}\right\}-\left\{\frac{\pi}{2}(7)^{2}\right\}
\end{aligned}
$$

6. $P Q R S$ is a cyclic quadrilateral. Given $\angle \mathrm{QPS}=73^{\circ}, \angle \mathrm{PQS}=55^{\circ}$ and $\angle \mathrm{PSR}=82^{\circ}$, calculate:
(i) $\angle \mathrm{QRS}$
(ii) $\angle R Q S$
(iii) $\angle \mathrm{PRQ}$

Answer:
(i) Since PQRS is a cyclic quadrilateral
$\angle \mathrm{QPS}+\angle \mathrm{QRS}-180^{\circ}$
$\Rightarrow 73^{\circ}+\angle \mathrm{QRS}=180^{\circ}$
$\Rightarrow \angle \mathrm{QRS}=180^{\circ}-73^{\circ}$
$\angle \mathrm{QRS}=107^{\circ}$
(ii) Again, $\angle \mathrm{PQR}+\angle \mathrm{PSR}=180^{\circ}$
$\angle P Q S+\angle \mathrm{RQS}+\angle \mathrm{PSR}=180^{\circ}$
$55^{\circ}-\angle \mathrm{RQS}+82^{\circ}=180^{\circ}$
$\angle \mathrm{RQS}=180^{\circ}-82^{\circ}-55^{\circ}=43^{\circ}$
(iii) In $\triangle P Q S$, by using angles sum property of a Δ.
$\angle \mathrm{PSQ}+\angle \mathrm{SQP}+\angle \mathrm{QPS}=180^{\circ}$
$\angle \mathrm{PSQ}+55^{\circ}+73^{\circ}=180^{\circ}$
$\angle P S Q=180^{\circ}-55^{\circ}-73^{\circ}$
$\angle P S Q=52^{\circ}$
Now, $\angle \mathrm{PRQ}=\angle \mathrm{PSQ}=52^{\circ}$ [Oop. $\angle \mathrm{s}$ of the same segment]
Hence, $\angle \mathrm{QRS}=107^{\circ}, \angle \mathrm{RQS}=43^{\circ}$ and $\angle \mathrm{PRQ}=52^{\circ}$
7. In the given figure, AC is a tangent to the circle with centre 0 . If $\angle A D B=55^{\circ}$, find x and y. Give reasons for your answers.

Answer:

We know that angle between the radius and the tangent at the point of contact is right angle.

$$
\therefore \quad \angle \mathrm{A}=90^{\circ}
$$

Also, in $\triangle \mathrm{OBE}, \mathrm{OB}=\mathrm{OE}=\operatorname{radius}(r)$
$\therefore \quad \angle \mathrm{B}=\angle \mathrm{OEB}$
In $\triangle A B D$,

$$
\begin{aligned}
\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{ADB} & =180^{\circ} \\
90^{\circ}+\angle \mathrm{B}+55^{\circ} & =180^{\circ} \\
\angle \mathrm{B} & =180^{\circ}-90^{\circ}-55^{\circ}=35^{\circ}
\end{aligned}
$$

Thus,

$$
\angle \mathrm{B}=\angle \mathrm{OEB}=35^{\circ}
$$

$$
\angle \mathrm{OEB}=\angle \mathrm{DEC}=35^{\circ}
$$

[vertically opp. \angle s]
$\angle \mathrm{EDC}+\angle \mathrm{ADE}=180^{\circ}$ $\angle \mathrm{EDC}+55^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{EDC}=180^{\circ}-55^{\circ}=125^{\circ}$
In $\triangle \mathrm{EDC}$,

$$
\begin{aligned}
\angle \mathrm{DEC}+\angle \mathrm{EDC}+x & =180^{\circ} \\
35^{\circ}+125^{\circ}+x & =180^{\circ} \\
\Rightarrow \quad x & =180^{\circ}-35^{\circ}-125^{\circ}=20^{\circ}
\end{aligned}
$$

In $\triangle A O C$,

$$
\angle \mathrm{A}+y^{\circ}+x^{\circ}=180^{\circ}
$$

$$
\begin{aligned}
\Rightarrow & 90^{\circ}+y^{\circ}+20^{\circ} & =180^{\circ} \\
\Rightarrow & y^{\circ} & =180^{\circ}-90^{\circ}-20^{\circ}=70^{\circ}
\end{aligned}
$$

Hence, $x=20^{\circ}$ and $y=70^{\circ}$.
8. $A B C$ is an isosceles right angled triangle with $\angle A B C=90^{\circ}$. A semicircle is drawn with $A C$ as the diameter. If $A B=B C=7 \mathrm{~cm}$, find the area of the shaded region. (Take $\mathrm{n}=22 / 7$)

Answer:
Let ABC is a right angled triangle. So

$$
\begin{aligned}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& =(7)^{2}+(7)^{2}=2(7)^{2}
\end{aligned}
$$

$$
A C=7 \sqrt{2}
$$

$$
\text { Area of semi circle }=\frac{1}{2} \times \frac{22}{7} \times\left(\frac{7 \sqrt{2}}{2}\right)^{2}
$$

$$
=\frac{1}{2} \times \frac{22}{7} \times \frac{49 \times 2}{4}=38.5 \mathrm{~cm}^{2}
$$

Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 7 \times 7=24.5 \mathrm{~cm}^{2}$
$\therefore \quad$ Area of shaded region $=$ Area of semi circle - Area of $\triangle \mathrm{ABC}$.

$$
=38 \cdot 5-24 \cdot 5=14 \mathrm{~cm}^{2} .
$$

9. In the given figure, $A B C D E$ is a pentagon inscribed in a circle such that $A C$ is a diameter and side $B C\left|\mid A E\right.$. If $\triangle B A C=50^{\circ}$, find giving reasons :
(i) $\angle A C B$
(ii) $\angle E D C$
(iii) $\angle B E C$

Hence, prove that BE is also a diameter.

Answer:
Since AC is a diameter and angle in a semi-circle is right angle
$\angle B=90^{\circ}$ and
$\angle A C B=40^{\circ}$
Also, $\mathrm{BC} \| \mathrm{AE}$
$\angle E A C=\angle A C B$
$=40^{\circ}$
[alt. int. $\angle \mathrm{s}$]
In cyclic quadrilateral ACDE
$\angle E A C+\angle E D C=180^{\circ}$
$40^{\circ}+\angle E D C=180^{\circ}$
$\angle E D C=180^{\circ}-40^{\circ}=140^{\circ}$
$\angle B E C=\angle B A C$
$=50^{\circ}[\angle \mathrm{s}$ in the same segment $]$
Also,
$\angle E A C=\angle E B C$
$=40^{\circ}[\angle \mathrm{s}$ in the same segment $]$
$\angle A B E=\angle A B C-\angle E B C$
$=90^{\circ}-40^{\circ}$
$=50^{\circ}$
Again, $\angle \mathrm{ABE}=\angle \mathrm{ACE}=50^{\circ}[\angle \mathrm{s}$ in the same segment]
Now, $\angle \mathrm{ACE}+\angle \mathrm{ACB}=50^{\circ}+40^{\circ}$
$=90^{\circ}$
$\angle B C E=90^{\circ}$
Hence, BE is a diameter, because angle is a semi-circle is right angle.
10. $A B$ and $C D$ are two parallel chords of a circle such that $A B=24 \mathrm{~cm}$ and $C D=10$ cm . If the radius of the circle is 13 cm , find the distance between the two chords.

Answer:
Here, O is the centre of the given circle of radius $13 \mathrm{~cm} . A B$ and $C D$ are two parallel chords, such that $A B=24 \mathrm{~cm}$ and $C D=10 \mathrm{~cm}$.
Join OA and OC.
Since $\mathrm{ON} \perp \mathrm{AB}$ and $0 \mathrm{M} \perp \mathrm{CD}$.
$\therefore \mathrm{M}, \mathrm{O}$ and N are collinear and M, N are mid-points of CD and AB .
Now, in rt. \angle ed $\triangle \mathrm{ANO}$, we have

$\mathrm{ON}_{2}=02 \mathrm{AN}_{2}$
= 132-122
$=169-144=25$
$\mathrm{ON}=\sqrt{25}=5 \mathrm{~cm}$
Similarly, in it. \angle ed $\triangle C M O$, we have
$\mathrm{OM} 2=\mathrm{OC} 2-\mathrm{CM} 2$
$=132-52$
$=169-25=144$
$0 M=\sqrt{ } 144=12 \mathrm{~cm}$
Hence, distance between the two chords
$\mathrm{NM}=\mathrm{NO}+\mathrm{OM}$
$=5+12$
$=17 \mathrm{~cm}$
11. In the given figure O is the centre of the circle and $A B$ is a tangent at B. If $A B=15$ cm and $\mathrm{AC}=7.5 \mathrm{~cm}$. Calculate the radius of the circle.

Answer:

Applying intercept theorem

$$
\begin{aligned}
\mathrm{AC} \times \mathrm{AD} & =\mathrm{AB}^{2} \\
7.5 \times(7.5+2 \mathrm{R}) & =15^{2}
\end{aligned}
$$

where R is the radius of the circle

$$
\begin{array}{rlrl}
(7 \cdot 5+2 \mathrm{R}) & =\frac{15 \times 15}{7 \cdot 5}=30 \\
& & 2 \mathrm{R} & =22 \cdot 5 \\
\Rightarrow \quad \mathrm{R} & =11 \cdot 25 \mathrm{~cm} .
\end{array}
$$

12. In the given figure $A B C D$ is a rectangle. It consists of a circle and two semi-circles each of which are of radius 5 cm . Find the area of the shaded region. Give your answer correct to three significant figures.

Answer:
Here, radius of a circle and two semi-circles $=5 \mathrm{~cm}$
Length of the rectangle $=5+10+5=20 \mathrm{~cm}$
Breadth of the rectangle $=10 \mathrm{~cm}$
Now, area of the shaded part $=$ Area of rectangle $-2 \times$ Area of circle
$=20 \times 10-2 \times \frac{22}{7} \times 5 \times 5$
$=200-\frac{1100}{7}=200-157.14$
$=42.86 \mathrm{~cm}^{2}$ or $42.9 \mathrm{~cm}^{2}$.
13.
(a) In the given figure, $A B$ is the diameter of a circle with centre 0 .
$\angle B C D=130^{\circ}$. Find :
(i) $\angle D A B$, (ii) $\triangle D B A$
[3]
(b) Given $\left[\begin{array}{rr}2 & 1 \\ -3 & 4\end{array}\right] X=\left[\begin{array}{l}7 \\ 6\end{array}\right]$. Write :

(i) the order of the matrix X
(ii) the matrix X.
[3]

Answer:
(a)

On joining $\mathrm{BD}, \angle \mathrm{ADB}$ is in the semicircle.

$$
\angle \mathrm{ADB}=90^{\circ}
$$

(Angle in a simicircle is right angle)
(i) Let ABCD is a cyclic quadilateral.

$$
\therefore \quad \begin{aligned}
\angle \mathrm{BCD}+\angle \mathrm{DAB} & =180^{\circ} \\
130^{\circ}+\angle \mathrm{DAB} & =180^{\circ} \\
\angle \mathrm{DAB} & =180^{\circ}-130^{\circ}=50^{\circ}
\end{aligned}
$$

(ii) Now, $\angle \mathrm{BAD}+\angle \mathrm{BDA}+\angle \mathrm{DBA}=180^{\circ}$

$$
\begin{aligned}
90^{\circ}+50^{\circ}+\angle \mathrm{DBA} & =180^{\circ} \\
\angle \mathrm{DBA} & =40^{\circ}
\end{aligned}
$$

(b)

$$
\begin{align*}
{\left[\begin{array}{rr}
2 & 1 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] } & =\left[\begin{array}{l}
7 \\
6
\end{array}\right] \\
{\left[\begin{array}{r}
2 a+b \\
-3 a+4 b
\end{array}\right] } & =\left[\begin{array}{l}
7 \\
6
\end{array}\right] \\
2 a+b & =7 \tag{1}\\
-3 a+4 b & =6 \tag{2}
\end{align*}
$$

Solving (1) and (2), we get

$$
\begin{array}{lr}
& a=2, b=3 \\
\therefore & \mathrm{X}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{array}
$$

14. In the given figure $P Q$ is a tangent to the circle at A. $A B$ and $A D$ are bisectors of $\angle C A Q$ and $\angle \mathrm{PAC}$. If $\angle \mathrm{BAQ}=30^{\circ}$ prove that :
(i) $B D$ is a diameter of the circle.
(ii) $A B C$ is an isosceles triangle.

Answer:
Here $P Q$, is a tangent of the circle at A.

$\angle B A Q=300$. Since $A B$ is
angle bisector of $\angle \mathrm{CAQ}$.
$\therefore \angle \mathrm{CAB}=\angle \mathrm{BAQ}=300$
Again, $\angle P A C=180^{\circ}-\angle C A Q$
$=180^{\circ}-30^{\circ}-30^{\circ}$
$=120^{\circ}$
Also, AD is angle bisector of $\angle P A C$
$\therefore \angle P A D=\angle C A D=600$
Since angles in the corresponding alternate segment are equal
$\therefore \angle A D B=\angle B A Q=300$ and $\angle \mathrm{DBA}=\angle \mathrm{PAD}=60^{\circ}$
Also, angles in same segment are equal
$\therefore \angle \mathrm{DCA}=\angle \mathrm{DBA}=600$
and $\angle \mathrm{ACB}=\angle \mathrm{ADB}=30^{\circ}$
Now, $\angle D C B=\angle D C A+\angle A C B=600+300=90^{\circ}$
We know that angle in a semi-circle is right angle.
Thus, $B D$ is a diameter of the circle.
In $\triangle A C B, \angle A C B=\angle C A B=30^{\circ}$
Hence, $\triangle A B C$ is an isosceles triangle.
15. In the figure given, 0 is the centre of the circle. $\mathrm{LDAE}=700$.

Find giving suitable reasons, the measure of:
(i) $\angle B C D$
(ii) $\angle B O D$
(iii) $\angle O B D$

Ans.
Here, $\angle \mathrm{DAE}=70^{\circ}$
$\therefore \angle B A D=180^{\circ} \angle D A E$
[a linear pair]
$=180^{\circ}-70^{\circ}=110^{\circ}$
$A B C D$ is a cyclic quadrilateral
$\therefore \angle B C D+\angle B A D=180^{\circ}$
$\angle B C D+110^{\circ}=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-110^{\circ}$
$=70^{\circ}$
Since angle subtended by an arc at the centre of a circle is twice the angle subtended at the remaining part of the circle.
$\therefore \angle B O D=2 \angle B C D=2 \times 70^{\circ}=140^{\circ}$
In $\triangle O B D, O B=O D=$ radii of same circle.
$\therefore \angle \mathrm{OBD}=\angle \mathrm{ODB}$
Thus, $\angle \mathrm{OBD}=12\left(180^{\circ}-\angle \mathrm{BOD}\right)=12\left(180^{\circ}-140^{\circ}\right)=12 \times 40^{\circ}=20^{\circ}$
16. $A B C$ is a triangle with $A B=10 \mathrm{~cm}, B C=8 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$ (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles.

Answer:
Let the three radii be x, y, z respectively.
$x+y=10$
$y+z=8$
$x+z=6$
Adding equations (1), (2) and (3), $2 x+2 y+2 z=24$
$x+y+z=12$ \qquad
Subtracting each equation (1), (2) and (3) from equation (4), we get $z=2 \mathrm{~cm}, \mathrm{x}=4 \mathrm{~cm}, \mathrm{y}=6 \mathrm{~cm}$.
17. In the given figure below, $A D$ is a diameter. O is the centre of the circle. $A D$ is parallel to $B C$ and $\angle C B D=32^{\circ}$.

Find:
(i) $\angle O B D$
(ii) $\angle A O B$
(iii) $\angle B E D$

Answer:

Given :

$$
\therefore \quad \angle \mathrm{ADB}=\angle \mathrm{DBC}=32^{\circ} \text { (alternate angles) }
$$

(iii) In $\triangle \mathrm{ABD}$

$$
\begin{aligned}
\angle \mathrm{ABD} & =90^{\circ} \\
\angle \mathrm{ADB} & =32^{\circ} \\
\angle \mathrm{BAD} & =180-(90+32) \\
& =58^{\circ} . \\
\angle \mathrm{BAD} & =\angle \mathrm{BED} \\
58^{\circ} & =\angle \mathrm{BED}
\end{aligned}
$$

$\mathrm{AD} \| \mathrm{BC}$
$\mathrm{OB}=\mathrm{OD}$ (radii of the circle)
(angles opposite to equal sides of a triangle)
(angle at the centre is twice the angle at remaining circumference)

(angle in a semicircle)

(angle in the same segment)

$$
\begin{aligned}
& \because \\
& \therefore \text { (i) } \angle \mathrm{OBD}=32^{\circ} \\
& \text { (ii) } \angle \mathrm{AOB}=2 \angle \mathrm{ODB} \\
& =2 \times 32=64^{\circ}
\end{aligned}
$$

18. The given figure represents a kite with a circular and a semicircular motif stuck on it. The radius of the circle is 2.5 cm and the semicircle is 2 cm . If diagonals AC and BD are the lengths 12 cm and 8 cm respectively, find the area of the :

(i) shaded part. Give your answer correct to the nearest whole number.
(ii) unshaded part.

Answer:
(i) Given : Radius of circle $=2.5 \mathrm{~cm}$, Radius of semicircle $=2 \mathrm{~cm}$.

$$
\begin{aligned}
\text { Area of shaded part } & =\text { Area of semicircle }+ \text { Area of circle } \\
& =\frac{1}{2} \pi r^{2}+\pi r^{2} \\
& =\frac{\pi(2)^{2}}{2}+\pi(2.5)^{2} \\
& =2 \pi+6.25 \pi \\
& =8.25 \pi \\
& =श 8.25 \times \frac{22}{7} \\
& =श 25.92 \simeq 26 \text { square } \mathrm{cm} .
\end{aligned}
$$

(ii) Let kite ABCD be a quadrilateral.

$$
\begin{aligned}
\therefore \quad \text { Area of quad. } & =\frac{1}{2} \times \text { the product of the diagonals } \\
\because \quad \text { Area of kite } & =\frac{1}{2} \mathrm{BD} \times \mathrm{AC} \\
& =\frac{1}{2} \times 8 \times 12 \\
& =48 \text { square } \mathrm{cm} .
\end{aligned}
$$

Area of unshaded part $=$ Area of kite - Area of shaded part

$$
=48-26
$$

$=22$ square cm
19. In the given figure, $A B C D$ is a square of side 21 cm . $A C$ and $B D$ are two diagonals of the square. Two semi circles are drawn with $A D$ and $B C$ as diameters. Find the area of the shaded region.

(Take $\pi=22 / 7$).

Answer:
Given : Side = 21 cm ,

Let Diagonal of the square $=\sqrt{ } 2$ (side)

$$
\begin{array}{ll}
\therefore & \mathrm{AC}=\mathrm{BD}=21 \sqrt{2} \\
\therefore & \mathrm{AO}=\mathrm{OC}=\mathrm{BO}=\mathrm{OD}=\frac{21 \sqrt{2}}{2}
\end{array}
$$

(Diagonals of square bisect each other)
Area of $\triangle A O D=$ Area of $\triangle B O C=\frac{1}{2} \times \frac{21 \sqrt{2}}{2} \times \frac{21 \sqrt{2}}{2}=\frac{441}{4} \mathrm{~cm}^{2}$.
Area of semicircle $=\frac{1}{2} \pi r^{2}$

$$
=\frac{1}{2} \times \frac{22}{7} \times\left(\frac{21}{2}\right)^{2}=\frac{693}{4} \mathrm{~cm}^{2}
$$

Area of shaded region $=$ Area of 2 semicircles + Area of

$$
\begin{aligned}
& =2 \times \frac{693}{4}+\frac{441}{4}+\frac{441}{4}=\frac{2268}{4} \\
& =567 \mathrm{~cm}^{2} .
\end{aligned}
$$

20. In the figure given below, O is the centre of the circle and SP is a tangent. If $\angle \mathrm{SRT}$ $=65^{\circ}$, find the value of x, y and z.

Answer:
In \triangle OSP, $\quad \angle$ OSR $=90^{\circ}$
In \triangle TSR

$$
\begin{aligned}
x+90^{\circ}+65^{\circ} & =180^{\circ} \\
x & =25^{\circ} \\
\angle \mathrm{SOQ} & =2 \angle \mathrm{STR} \\
\text { [Angle at centre }=2 & \times \text { Angle at circumference] } \\
y & =2 \times 25=50^{\circ}
\end{aligned}
$$

[Radius is perpendicular to tangent]

In \triangle OSP,
$50^{\circ}+90^{\circ}+z=180^{\circ}$
$\therefore \mathrm{z}=40^{\circ}$
21. In triangle $\mathrm{PQR}, \mathrm{PQ}=24 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$ and $\angle \mathrm{PQR}=90^{\circ}$. Find the radius of the inscribed circle.

Answer:
Given : $\triangle \mathrm{PQR}$ is right angled.

$$
\begin{aligned}
\mathrm{PR}^{2} & =\mathrm{PQ}^{2}+\mathrm{QR}^{2}=(24)^{2}+(7)^{2} \\
& =576+49=625 \\
\therefore \quad \mathrm{PR} & =25 \mathrm{~cm}
\end{aligned}
$$

Draw $\perp r$ from O on PQ and PR and mark as B and C respectively.

$$
\begin{aligned}
\angle \mathrm{OBQ} & =\angle \mathrm{OAQ}=\angle \mathrm{OCR} \\
& =90^{\circ}
\end{aligned}
$$

(\angle between radius and tangent is 90°)

All $\angle s$ of OAQB are 90° and $\mathrm{QA}=\mathrm{QB}$
(Since the tangent to a circle from an exterior
point are equal in length).
\therefore OAQB is a square.

$$
\begin{array}{rlrl}
\therefore & & \mathrm{QA}=\mathrm{QB} & =x \\
\mathrm{AR} & =7-x=\mathrm{RC} \\
\mathrm{BP} & =12-x=\mathrm{PC} \\
\because \quad \mathrm{PC}+\mathrm{RC} & =\mathrm{PR} \\
& & x-x+12-x & =25 \\
\therefore \quad & x & =3 \mathrm{~cm}
\end{array}
$$

22. $A B$ and $C D$ are two chords of a circle intersecting at P. Prove that $A P \times P B=C P \times$ PD.

Answer:
To Prove: $\mathrm{AP} \times \mathrm{PB}=\mathbf{C P} \times \mathbf{P D}$
Construction: Join AD and CB.

Proof: In \triangle APD and \triangle CPB

$$
\begin{array}{rlrl}
\angle \mathrm{A} & =\angle \mathrm{C} \quad \begin{array}{l}
\text { [angles of the same segment] } \\
\angle \mathrm{C}
\end{array} & =\angle \mathrm{B} \quad \text { [angles of the same segment] } \\
\therefore & & & \\
\therefore \mathrm{APD} & \sim \Delta \mathrm{BPC} \quad \text { [AA Postulate] } \\
\therefore & & \overline{\mathrm{AP}} & =\frac{\mathrm{PD}}{\mathrm{~PB}} \quad \text { [corresponding sides of similar } \Delta s \text { are proportional] } \\
\therefore \quad \mathrm{AP} \times \mathrm{PB} & =\mathrm{CP} \times \mathrm{PD} \quad \text { Proved }
\end{array}
$$

23. In the figure given below, $A B C D$ is a rectangle. $A B=14 \mathrm{~cm}, B C=7 \mathrm{~cm}$. From the rectangle, a quarter circle BFEC and a semicircle DGE are removed.

Calculate the area of the remaining piece of the rectangle. (Take $\pi=22 / 7$)

Answer:
(c)

Area of rectangle $\mathrm{ABCD}=14 \times 7=98 \mathrm{~cm}^{2}$
Area of quarter circle BFEC $=\frac{1}{4} \pi(7)^{2}=\frac{49}{4} \pi$ Area of semi-circle DGE $=\frac{1}{2} \pi\left(\frac{7}{2}\right)^{2}=\frac{1}{2} \times \frac{49}{4} \pi$ Area of remaining piece of rectangle $=98-\left[\frac{49}{4} \pi+\frac{1}{2} \times \frac{49}{4} \pi\right]$

$$
=98-\frac{49}{4} \pi\left[1+\frac{1}{2}\right]
$$

$$
=98-\frac{49}{4} \times \frac{22}{7} \times \frac{3}{2}=98-\frac{231}{4}
$$

$$
=98-57.75
$$

$$
=40 \cdot 25 \mathrm{~cm}^{2}
$$

24. In the figure, $\angle D B C=58^{\circ}$. $B D$ is a diameter of the circle. Calculate :
(i) $\angle \mathrm{BDC}$
(ii) $\angle B E C$
(iii) $\angle B A C$

Answer:
In $\triangle B C D ; \angle D B C=58^{\circ}$
(i) $\angle B C D=90^{\circ}$ (Angle in the semicircle as $B D$ is diameter)
$\therefore \angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$
$\Rightarrow 58^{\circ}+90^{\circ}+\angle B D C=180^{\circ}$
$\Rightarrow \angle B D C=180^{\circ}-\left(90^{\circ}+58^{\circ}\right)$
$=180^{\circ}-148^{\circ}$
$=32^{\circ}$ Ans.
(ii) $\angle B E C+\angle B D C=180^{\circ}$ ($\because B E C D$ is a cyclic quadrilateral $)$
$\angle B E C=180^{\circ}-\angle B D C=180^{\circ}-32^{\circ}$
$\angle B E C=148^{\circ}$
(iii) $\angle \mathrm{BAC}=\angle \mathrm{BDC}$ (Angle of same segment are equal)
$\angle B A C=32^{\circ}$
25. In the figure given below, diameter AB and CD of a circle meet at P . PT is a tangent to the circle at $\mathrm{T} . \mathrm{CD}=7.8 \mathrm{~cm}, \mathrm{PD}=5 \mathrm{~cm}, \mathrm{PD}=4 \mathrm{~cm}$.

Find:
(i) AB .
(ii) the length of tangent PT.
ans.
(b) (i) Since chord CD and tangent at point T intersect each other at P , $\therefore \quad \mathrm{PC} \times \mathrm{PD}=\mathrm{PT}^{2}$
Since chord $A B$ and tangent at point T intersect each other at P,

\therefore	$\mathrm{PA} \times \mathrm{PB}=\mathrm{PT}^{2}$
From (1) and (2),	$\mathrm{PC} \times \mathrm{PD}=\mathrm{PA} \times \mathrm{PB}$

Given: $\mathrm{CD}=7.8 \mathrm{~cm} ; \mathrm{PD}=5 \mathrm{~cm}, \mathrm{~PB}=4 \mathrm{~cm}$.
$\therefore \mathrm{PA}=\mathrm{PB}+\mathrm{AB}=4+\mathrm{AB}, \quad \mathrm{PC}=\mathrm{PD}+\mathrm{CD}=5+7 \cdot 8=12 \cdot 8 \mathrm{~cm}$.
Putting these values in eq. (3)

		$12 \cdot 8 \times 5$	$=(4+\mathrm{AB}) \times 4$
\Rightarrow	$4+\mathrm{AB}$	$=\frac{12 \cdot 8 \times 5}{4}$	
\Rightarrow	$4+\mathrm{AB}$	$=16$	
\Rightarrow	AB	$=12 \mathrm{~cm}$.	
	Hence,	AB	$=12 \mathrm{~cm}$.
	From eq. (1),	$\mathrm{PT}^{2}=\mathrm{PA} \times \mathrm{PB}$	$=12.8 \times 5$
\Rightarrow	PT^{2}	$=64$	
\Rightarrow	PT	$=8 \mathrm{~cm} .=$ Length of tangent.	

26. Construct a $\triangle A B C$ with $B C=6.5 \mathrm{~cm}, A B=5.5 \mathrm{~cm}, A C=5 \mathrm{~cm}$. Construct the incircle of the triangle. Measure and record the radius of the incircle.

Answer:
Steps of construction:

(1) Construct a $\triangle A B C$ with the given data.
(2) Draw the internal bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$. Let these bisectors cut at O .
(3) Taking O as centre. Draw a incircle which touches all the sides of the $\triangle A B C$.
(4) From O draw a perpendicular to side $B C$ which cut at N.
(5) Measure ON which is required radius of the incircle.

ON = 1.5 cm . (app.)
27. In the figure given below, O is the centre of the circle. $A B$ and $C D$ are two chords of the circle. $O M$ is perpendicular to $A B$ and $O N$ is perpendicular to $C D$. $A B=24 \mathrm{~cm}, O M=5 \mathrm{~cm}, O N=12 \mathrm{~cm}$.

Find the:
(i) radius of the circle.
(ii) length of chord CD.

Answer:
(a) Given: $\mathrm{AB}=24 \mathrm{~cm} ; \mathrm{OM}=5 \mathrm{~cm}, \mathrm{ON}=12 \mathrm{~cm}$.
\because
M is mid point of $A B$.
$\therefore \quad \mathrm{AM}=12 \mathrm{~cm}$.
(i) Let radius of circle $=r$

From \triangle AMO;

$O M \perp A B$

$$
\begin{aligned}
\mathrm{AO}^{2} & =\mathrm{AM}^{2}+\mathrm{OM}^{2} \\
r^{2} & =(12)^{2}+(5)^{2} \\
& =144+25=169 \\
r & =13 \mathrm{~cm} .
\end{aligned}
$$

(ii) Now from $\triangle \mathrm{CNO} ; \quad \mathrm{CO}^{2}=\mathrm{ON}^{2}+\mathrm{CN}^{2}$

$$
\begin{aligned}
r^{2} & =(12)^{2}+\mathrm{CN}^{2} \\
(13)^{2}-(12)^{2} & =\mathrm{CN}^{2} \\
\Rightarrow \quad 169-144 & =\mathrm{CN}^{2} \\
\Rightarrow \quad \mathrm{CN}^{2} & =25 \\
\Rightarrow \quad \mathrm{CN} & =5
\end{aligned}
$$

As $\mathrm{ON} \perp \mathrm{CD}, \mathrm{N}$ is mid point of CD.
$\therefore \mathrm{CD}=2 \mathrm{CN}=2 \times 5=10 \mathrm{~cm}$.
(b) In the given figure,
$\angle B A D=65^{\circ}$,
$\angle A B D=70^{\circ}$,
$\angle B D C=45^{\circ}$
(i) Prove that AC is a diameter of the circle.
(ii) Find $\angle A C B$.

(2013)

Answer:
(b) Given: $\angle \mathrm{BAD}=65^{\circ}, \angle \mathrm{ABD}=70^{\circ}, \angle \mathrm{BDC}=45^{\circ}$

(i) $\because \mathrm{ABCD}$ is a cyclic quadrilateral.

In $\triangle \mathrm{ABD}$,

$$
\therefore \quad \begin{aligned}
\angle \mathrm{BDA}+\angle \mathrm{DAB} & +\angle \mathrm{ABD}=180^{\circ} \text { By using sum property of } \Delta^{s} \\
\angle \mathrm{BDA} & =180^{\circ}-\left(65^{\circ}+70^{\circ}\right) \\
& =180^{\circ}-135^{\circ} \\
& =45^{\circ}
\end{aligned}
$$

Now from $\triangle A C D$,

$$
\begin{array}{rlr}
\angle \mathrm{ADC} & =\angle \mathrm{ADB}+\angle \mathrm{BDC} \\
& =45^{\circ}+45^{\circ} \\
& =90^{\circ} & \left(\because \angle \mathrm{BDA}=\angle \mathrm{ADB}=45^{\circ}\right) \\
\end{array}
$$

Hence, $\angle \mathrm{D}$ makes right angle belongs in semi-circle therefore AC is a diameter of the circle.
(ii)

$$
\angle \mathrm{ACB}=\angle \mathrm{ADB} \quad \text { (Angles in the same segment of a circle) }
$$

$$
\therefore \quad \angle \mathrm{ACB}=45^{\circ}
$$

$$
\left(\because \angle \mathrm{ADB}=45^{\circ}\right)
$$

29. $A B$ is a diameter of a circle with centre $C=(-2,5)$. If $A=(3,-7)$. Find:
(i) The length of radius AC
(ii) The coordinates of B.

Answer:
(i) The length of radius $\mathrm{AC}=\sqrt{(-2-3)^{2}+(5+7)^{2}}$

$$
\begin{aligned}
& =\sqrt{(-5)^{2}+(12)^{2}} \\
& =\sqrt{25+144} \\
& =\sqrt{169} \\
& =13
\end{aligned}
$$

(ii) Let the point of B be (x, y).

Given C is the mid-point of $A B$. Therefore

$$
\left.\begin{array}{rlrlrl}
& & -2 & =\frac{3+x}{2} & \text { and } & 5
\end{array}\right)=\frac{-7+y}{2}
$$

Hence, the co-ordinate of $\mathbf{B}(-7,17)$.
(b) In the given circle with centre $O, \angle A B C=100^{\circ}, \angle A C D=40^{\circ}$ and CT is a tangent to the circle at C. Find $\angle A D C$ and $\angle D C T$.

Answer:

Given: $\angle \mathbf{A B C}=100^{\circ}$
We know that,

$$
\begin{aligned}
\angle \mathrm{ABC}+\angle \mathrm{ADC} & =180^{\circ} \\
100^{\circ}+\angle \mathrm{ADC} & =180^{\circ} \\
\angle \mathrm{ADC} & =180^{\circ}-100^{\circ} \\
\angle \mathrm{ADC} & =80^{\circ}
\end{aligned}
$$

(The sum of opposite angles in a cyclic quadrilateral $=180^{\circ}$)

$$
\left.\therefore \quad 100^{\circ}+\angle \mathrm{ADC}=180^{\circ} \quad \text { a cyclic quadrilateral }=180^{\circ}\right)
$$

Join OA and OC, we have a isosceles \triangle OAC,

\because	OA	$=\mathrm{OC}$	(Radii of a circle)
\therefore	$\angle \mathrm{AOC}$	$=2 \times \angle \mathrm{ADC} \quad$ (by theorem)	
or	$\angle \mathrm{AOC}$	$=2 \times 80^{\circ}=160^{\circ}$	
In $\triangle \mathrm{AOC}$,			
$\angle \mathrm{AOC}+\angle \mathrm{OAC}+\angle \mathrm{OCA}$	$=180^{\circ}$		
$160^{\circ}+\angle \mathrm{OCA}+\angle \mathrm{OCA}$	$=180^{\circ} \quad[\because \angle \mathrm{OAC}=\angle \mathrm{OCA}]$		
$2 \angle \mathrm{OCA}$	$=20^{\circ}$		
$\angle \mathrm{OCA}$	$=10^{\circ}$		
		$\mathrm{OCA}+\angle \mathrm{OCD}$	$=40^{\circ}$
$10^{\circ}+\angle \mathrm{OCD}$	$=40^{\circ}$		
	$\angle \mathrm{OCD}$	$=30^{\circ}$	

Hence, $\quad \angle \mathrm{OCD}+\angle \mathrm{DCT}=\angle \mathrm{OCT}$
$\because \quad \angle \mathrm{OCT}=90^{\circ}$
(The tangent at a point to circle is \perp to the radius through the point to contant)

$$
\begin{aligned}
& 30^{\circ}+\angle \mathrm{DCT} & =90^{\circ} \\
\therefore & \angle \mathrm{DCT} & =60^{\circ}
\end{aligned}
$$

31. In the figure alongside, $O A B$ is a quadrant of a circle. The radius $O A=3.5 \mathrm{~cm}$ and $O D=2 \mathrm{~cm}$. Calculate the area of the shaded portion. (Take $\pi=22 / 7$)

Answer:
Radius of $m=0$ drant OACR $=-9.5 \mathrm{~cm}$
$\therefore \quad$ Area of quadrant $\mathrm{OACB}=\frac{1}{4} \pi r^{2}$

$$
=\frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5=9.625 \mathrm{~cm}^{2}
$$

Here,
$\angle \mathrm{AOD}=90^{\circ}$
Then

$$
\text { area of } \Delta A O D=\frac{1}{2} \times \text { base } \times \text { height }
$$

Base $=3.5 \mathrm{~cm}$ and height $=2 \mathrm{~cm}$

$$
\begin{aligned}
\therefore & =\frac{1}{2} \times 3.5 \times 2=3.5 \mathrm{~cm}^{2} \\
\text { Area of shaded portion } & =\text { Area of quadrant }- \text { Area of triangle } \\
& =9.625-3.5 \\
& =6.125 \mathrm{~cm}^{2}
\end{aligned}
$$

32. In the figure given alongside $A B$ and $C D$ are two parallel chords and O is the centre. If the radius of the circle is 15 cm , find the distance MN between the two chords of length 24 cm and 18 cm respectively.

Answer:
Given: $\mathrm{OA}=\mathrm{OC}=15 \mathrm{~cm}, \mathrm{AB}=24 \mathrm{~cm}, \mathrm{CD}=18 \mathrm{~cm}$.
Now

$$
\mathrm{AM}_{2}=12, \mathrm{CN}=9
$$

In \triangle OAM,
$\mathrm{OA}^{2}=\mathrm{OM}^{2}+\mathrm{AM}^{2}$
$\mathrm{OM}^{2}=\mathrm{OA}^{2}-\mathrm{AM}^{2}$
$=15^{2}-12^{2}$
$=225-144=81$

$$
\mathrm{OM}=9
$$

Similarly, in \triangle OCN,

$$
\begin{aligned}
\mathrm{OC}^{2} & =\mathrm{ON}^{2}+\mathrm{CN}^{2} \\
\mathrm{ON}^{2} & =\mathrm{OC}^{2}-\mathrm{CN}^{2}=15^{2}-9^{2} \\
& =225-81=144 \\
\mathrm{ON} & =12 \\
\mathrm{MN} & =\mathrm{OM}+\mathrm{ON}=9+12=21 \mathrm{~cm} .
\end{aligned}
$$

33. In the following figure O is the centre of the circle and $A B$ is a tangent to it at point B. $\angle B D C=65^{\circ}$. Find $\angle B A O$.

Answer:

$$
\begin{aligned}
\mathrm{AB} \text { is tangent } & \Rightarrow \angle \mathrm{ABO}=90^{\circ} \\
\angle \mathrm{BDC} & =65^{\circ}(\text { given }) \\
\Rightarrow \quad \angle \mathrm{BCD} & =90^{\circ}-65^{\circ}=25^{\circ} \\
\angle \mathrm{BOE} & =2 \times 25^{\circ} \text { (angle at centre) } \\
& =50^{\circ} \\
\angle \mathrm{BAO} & =90^{\circ}-\angle \mathrm{BOE} \\
\angle \mathrm{BAO} & =90^{\circ}-50^{\circ} \\
& =40^{\circ}
\end{aligned}
$$

34. A doorway is decorated as shown in the figure. There are four semi-circles. BC, the diameter of the larger semi circle is of length 84 cm . Centres of the three equal semi-circles lie on $B C$. $A B C$ is an isosceles triangle with $A B=A C$. If $B O=$ OC, find the area of the shaded region. (Take $\pi=22 / 7$)

Answer:
Let $\mathrm{AB}=\mathrm{AC}=x \mathrm{~cm}$.
As angle in semi circle is 90°
i.e., $\quad \angle \mathrm{A}=90^{\circ}$

In right angled $\Delta \mathrm{ABC}$, by Pythagoras theorem, we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =\mathrm{BC}^{2} \\
x^{2}+x^{2} & =84^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{2}=84 \times 84 \\
& x^{2}=84 \times 42 \\
& \therefore \quad \text { Now } \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC} \\
&=\frac{1}{2} \times 84 \times 42 \\
&=1764 \mathrm{~cm}^{2} . \\
& \text { Diameter of semicircle }(2 r)=84 \mathrm{~cm} \\
& \text { Radius }(r)=\frac{1}{2} \times 84=42 \mathrm{~cm} \\
& \text { Dater of semicircle }=\frac{1}{2} \pi r^{2}=\frac{1}{2} \times \frac{22}{7} \times 42 \times 42 \\
&=2772 \mathrm{~cm}^{2} . \\
& \therefore \quad \text { Area } \\
& \text { Diameter of each (three } \\
& \\
& \text { Radius of the } 3 \text { equal semicircles }=\frac{1}{2} \times 28=14 \mathrm{~cm} . \\
& \text { Area of three }
\end{aligned}
$$

Area of shaded region $=$ Area of semicircles + Area of three equal circles

- Area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =2772+924-1764 \\
& =3696-1764 \\
& =1932 \mathrm{~cm}^{2} .
\end{aligned}
$$

35. In the figure given below ' O ' is the centre of the circle. If $\mathrm{QR}=\mathrm{OP}$ and $\angle \mathrm{ORP}=$ 20°. Find the value of ' x ' giving reasons.

Answer:
Here, in $\triangle O P Q$
$O P=O Q=r$
Also, OP = QR [Given]

$$
\begin{aligned}
& \text { In } \triangle O Q R, O Q=Q R \\
& \angle Q O R=\angle O R P=20^{\circ} \\
& \text { And } \angle O Q P=\angle Q O R+\angle O R Q \\
& =20^{\circ}+20^{\circ} \\
& =40^{\circ} \\
& \text { Again, in } \triangle O P Q \\
& \angle P O Q=180^{\circ}-\angle O P Q-\angle O Q P \\
& =180^{\circ}-40^{\circ}-40^{\circ} \\
& =100^{\circ} \\
& \text { Now },{ }^{\circ}+\angle P O Q+\angle Q O R=180^{\circ} \text { [a straight angle] } \\
& x^{\circ}+100^{\circ}+20^{\circ}=180^{\circ} \\
& x^{\circ}=180^{\circ}-120^{\circ}=60^{\circ}
\end{aligned}
$$

Hence, the value of x is 60 .

