## **Chemical Bonding**

1. The covalent bond in which the electrons are shared equally between the combining atoms.

Answer: Non-polar covalent bond

2. Draw the electron dot structure of Nitrogen molecule [N = 7]

(2019)

(2019)

Answer: Nitrogen molecule  $N = 7 \implies 2.5$  $\begin{array}{c} K & L \\ N = 7 \Rightarrow 2, 5 \\ K & L \end{array} \xrightarrow{\circ} N \xrightarrow{\times} \circ \\ K & L \end{array} \xrightarrow{\circ} N \xrightarrow{\times} \circ \\ \times \circ \\ \times \circ \end{array}$ KL

Nitrogen atoms share three electrons and so forms a triple covalent bond.

3. Draw the electron dot structure of Sodium chloride [Na = 11, Cl = 17]

(2019)

Answer:  
Sodium chloride  
Na(11) 
$$\Rightarrow 2, 8, 1$$
  
K L M  
Cl (17)  $\Rightarrow 2, 8, 7$   
K L M  
Na • +  $\stackrel{\times \times \times}{Cl} \stackrel{\times}{I}_{\times \times} \longrightarrow [Na]^{+} [\stackrel{\times \times}{\bullet} \stackrel{\times \times}{Cl} \stackrel{\times}{\bullet} \stackrel{\times}{Cl} \stackrel{\times}{\bullet} \stackrel{\times}{\bullet} \stackrel{\times}{Cl} \stackrel{\times}{\bullet} \stackrel{\times}{\bullet} \stackrel{\times}{\bullet} \stackrel{\times}{Cl} \stackrel{\times}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\times}{\bullet} \stackrel{\times}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\times}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\times}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\times}{\bullet} \stackrel{\bullet}{\bullet} \stackrel{\bullet$ 

Sodium donates one electron to chlorine to form a positive ion and chlorine gains one electron to form a negative ion. These ions form an electrovalent bond and are held strongly by electrostatic forces of attraction. 4. Draw the electron dot structure of Ammonium ion [N = 7, H = 1]

Answer:Ammonia donates its lone pair to proton forming ammonium ion.

$$\begin{array}{c} H \\ H \stackrel{\bullet}{}_{x} \stackrel{\bullet}{N} \stackrel{\bullet}{}_{x} H \\ \stackrel{\bullet}{} \stackrel{\bullet}{} \stackrel{\bullet}{}_{x} H \\ \stackrel{\bullet}{} \stackrel{$$

5. Ionic compounds have a high melting point. Give reason

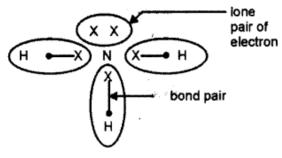
(2018)

(2019)

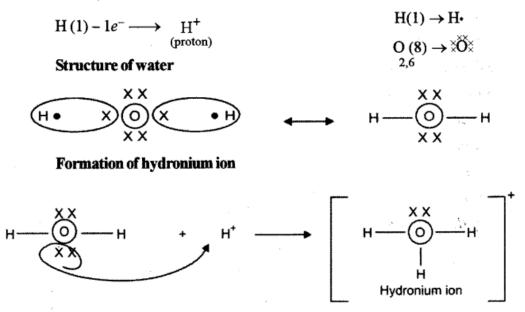
Answer:

lons of ionic compounds are held strongly by electrostatic forces of attraction. These strong forces require high energy to break the bond. Hence, they have a high melting point.

6. Ionic or electrovalent compounds do not conduct electricity in their .....state. (fused/solid)


(2018)

| Answer: |  |  |
|---------|--|--|
| Fused   |  |  |


7. (i) What do you understand by a lone pair of electrons ?
(ii) Draw the electron dot diagram of Hydronium ion. (H = 1,0 = 8)
(2018)

Answer:

(i) The unshared pair of electrons that does not normally take part in a chemical reaction is known as lone pair. Example:



(ii) Hydronium ion Formation of proton:



- 8. Which one of the following is **not** true of metals:
  - (A) Metals are good conductors of electricity
  - (B) Metals are malleable and ductile
  - (C) Metals from non-polar covalent compounds
  - (D) Metal will have 1 or 2 or 3 electrons in their valence shell.

(2010)

## Answer:

(C)Metals from non-polar covalent compounds

9. Hydrogen chloride can be termed as a polar covalent compound.

(2011)

Answer:

Difference between electronegativities of H and Cl is high. Electronegativity. of Cl is much higher than that of H. So a unidirectional pull towards Cl will be created leading to polarity. 10. In covalent compounds, the bond is formed due to the .......... (sharing /transfer) of electrons. (2011) Answer: sharing 11. Electrovalent compounds have a ..... (low/high) boiling point. (2011)Answer: high 12. A molecule of ...... contains a triple bond (hydrogen, ammonia, nitrogen). (2011)Answer: nitrogen 13. This metal is a liquid at room temperature. (A) Potassium (B) Zinc (C) Gold (D) Mercury (2011) Answer:

(D) Mercury

## 14. Match column A with column B.

| Column A           | Column B      |  |
|--------------------|---------------|--|
| 1. Sodium chloride | Increases     |  |
| 2. Ammonium ion    | Covalent bond |  |

| 3. Electronegativity across the period   | Ionic bond                   |  |
|------------------------------------------|------------------------------|--|
| 4. Non metallic character down the group | Covalent and Coordinate bond |  |
| 5. Carbon tetrachloride                  | Decreases                    |  |

## Answer:

1.Sodium chloride – Ionic bond.

2. Ammonium ion – Covalent and Coordinate bond.

3. Electronegativity across a period – Increases.

4.Non metallic character down the group – Decreases.

5.Carbon tetrachloride – Covalent bond.

15. The energy required to remove an electron from a neutral isolated gaseous atom and convert it into a positively charged gaseous ion is called ......... (electron affinity, ionisation potential, electronegativity)

(2017)

(2010)

Answer: ionisation potential

16. The compound that does not have a lone pair of electrons is (water, ammonia, carbon tetrachloride)

(2017)

Answer: carbon tetrachloride

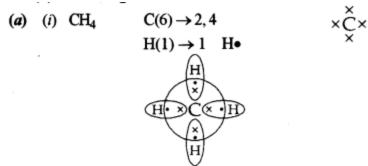
- 17. Which of the following is a common characteristic of a covalent compound?
  - 1. high melting point
  - 2. consists of molecules
  - 3. always soluble in water
  - 4. conducts electricity when it is in the molten state

(2017)

Answer: 2. consists of molecules

- 18. State the type of Bonding in the following molecules: [2]
  - (i) Water
  - (ii) Calcium oxide

Answer:


- (i) Covalent bonding
- (ii) Ionic bonding
- 19. Draw an electron dot diagram to show the formation of each of the following compounds: [4]
  - (i) Methane

(ii) Magnesium Chloride [H = 1, C = 6, Mg = 12, Cl = 17]

(2017)

(2017)



